
Quantum Diamond Sensing: The Surprising Power of NV Centers
In this episode of the 632nm podcast, we explore how diamond-based nitrogen vacancy (NV) centers went from being a curiosity in gemstone physics to a transformative tool for precision magnetometry. You’ll hear how these tiny defects enable room-temperature quantum sensing, providing ultra-high spatial resolution and remarkable resilience in extreme conditions—from planetary research unlocking secrets of our solar system’s earliest days to potential biomedical diagnostics. Our guest recounts the serendipitous connections, engineering challenges, and surprising scientific discoveries along the way.We also discuss how interdisciplinary collaborations spark new ideas, how startups and academia differ in their pursuit of quantum breakthroughs, and why community-driven science can accelerate major scientific leaps. Don’t miss this deep dive into one of the most versatile quantum tools around.00:42 The Fascination with Diamonds and NV Centers02:58 Early Research and Collaborations10:21 Breakthroughs and Applications in Science50:48 Advancements in Magnetic Imaging51:59 Commercial Applications of Quantum Diamond Microscopes01:02:16 Challenges in Translating Research to Products01:11:11 Future Prospects and Innovations01:36:46 Exploring Quantum Systems and Defects01:39:03 The Harvard Quantum Community01:44:53 Precision Measurement and Quantum Applications01:54:28 Advice for Aspiring Scientists*Follow us:*Twitter: https://x.com/632nmPodcastSubstack: https://632nmpodcast.substack.com/Michael Dubrovsky: https://x.com/MikeDubrovskyMisha Shalaginov: https://x.com/MYShalaginovXinghui Yin: https://x.com/XinghuiYin*Subscribe:*Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6ORWebsite: https://www.632nm.com
6 Juni 2h 21min

Origin of Life, Thermodynamics, and God: Jeremy England
In this episode, Jeremy England reframes the origin of life debate by applying non-equilibrium physics, challenging the notion that life’s emergence must be purely biological or chemical. He describes how matter can “learn” from its environment, drawing on examples from spin glasses, protein folding, and resonating mechanical systems.England also shares how his deep engagement with religious texts—and his unexpected cameo as “the next Darwin” in popular media—shaped his understanding of science and spirituality. From his ordination as a rabbi to his groundbreaking thermodynamic research, England offers a unique perspective on the interplay between faith, scientific inquiry, and the age-old search for meaning.Chapters: 02:59 Jeremy's Journey into Biophysics 08:46 Non-Equilibrium Thermodynamics 35:30 Dissipative Adaptation and Evolutionary Principles 44:34 The Evolution of Energy Consumption 51:35 Thermodynamics in Microbiomes and Ecology 57:18 Protein Folding and Cellular Computation 01:01:43 Origins of Life and Prebiotic Scenarios 01:26:02 Exploring Thermodynamic Constraints on Aging 01:31:48 Science, Religion, and the Infinite Regress 01:36:04 Jewish Law and Modern Materials 01:39:47 Torah's Approach to Existence 02:01:56 Moses' Signs and Worldview 02:09:03 Balancing Practicality and Spirituality 02:14:02 Advice for Aspiring ScientistsMore About Jeremy:Twitter: Jeremy England (@lifelikephysics) / XBook: https://www.amazon.com/Every-Life-Fire-Thermodynamics-Explains/dp/1541699017Follow us:Twitter: https://x.com/632nmPodcastSubstack: https://632nmpodcast.substack.com/Michael Dubrovsky: https://x.com/MikeDubrovskyMisha Shalaginov: https://x.com/MYShalaginovXinghui Yin: https://x.com/XinghuiYinSubscribe:Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6ORWebsite: https://www.632nm.com
19 Maj 2h 19min

Flux Grant by 1517 Fund: Backing Garage Science and Sci-Fi Tech
In this episode of the 632nm podcast, we sit down with 1517 Fund’s Danielle Strachman and Michael Gibson to explore their Flux program, a unique pre-seed fellowship backing wild, unorthodox scientific and technical ideas. They share how they’ve helped founders transform “garage science” projects—like nuclear batteries, quantum computing prototypes, and cutting-edge materials—into serious startups. Along the way, they discuss the pitfalls of chasing academic prestige, the power of genuine curiosity, and how to leverage minimal resources for big ambitions.We also learn about the flexibility of Flux’s “cannon launch” grants, what it takes to persuade investors when your idea sounds like sci-fi, and why “hyper-fluency” and high agency are crucial for founders. Whether you’re a postdoc itching to leave the lab or a solo tinkerer with a radical concept, this conversation offers actionable insights on securing early funding and taking that bold plunge into world-changing tech.Our Guests:Danielle Strachman: https://x.com/DStrachmanMichael Gibson: https://x.com/William_Blake1517 Fund: https://t.co/Ltt0eiRJkzWant to apply for Flux? https://t.co/O8b5C0f21sFollow us:Twitter: https://x.com/632nmPodcastSubstack: https://632nmpodcast.substack.com/Michael Dubrovsky: https://x.com/MikeDubrovskyMisha Shalaginov: https://x.com/MYShalaginovXinghui Yin: https://x.com/XinghuiYinSubscribe:Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6ORWebsite: https://www.632nm.com/
10 Maj 47min

Trapped Ion Quantum Computing: Christopher Monroe of IonQ
In this episode of the 632nm podcast, our guest traces the evolution from the early days of Bose-Einstein condensation experiments to pioneering trapped ion quantum gateways. He reveals how breakthroughs in laser cooling and atomic clock research unexpectedly paved the way for the first quantum logic gates, beating out the BEC community at a pivotal conference. We also hear about the surprising roles of entanglement, error mitigation, and photonic interconnects in shaping modern quantum hardware.The conversation shifts to the commercial world, where government funding, venture capital, and startup challenges collide. Our guest shares insider stories about forming one of the first pure-play quantum computing companies, securing multi-million-dollar investments, and navigating the highs and lows of going public. From laser noise and integrated photonics to the promise of game-changing heuristic algorithms, this episode offers a rare look at both the science and business driving trapped ion quantum computing.Chapters:01:48 Journey into Trapped Ions 03:57 Early Career and Research at NIST08:13 The Path to Bose-Einstein Condensate 11:32 Applications and Implications of BEC 22:05 Measuring Ultra-Low Temperatures 27:46 Advancements in Atomic Clocks 35:09 Challenges in Atomic Clock Precision 43:39 Historical Development of Quantum Computing 50:30 Early Experiments and Advances in Ion Traps 01:02:59 Understanding Dipole-Dipole Shifts in Quantum Systems 01:04:18 Initializing Qubits in Quantum Computing 01:09:05 Challenges in Scaling Quantum Computers 01:13:14 Fidelity and Error Correction in Quantum Gates 01:17:51 Laser Noise and Quantum Computing Limitations 01:35:08 Commercializing Quantum Computing: The IonQ Story 01:41:53 Bitcoin and Quantum Computing Threats 01:44:09 IonQ's Journey and Going Public 01:46:39 Quantum Computing Applications and Challenges 01:55:44 Quantum Hardware and Interconnects 02:21:01 Speculative Future of Quantum ComputingFollow us:Twitter: https://x.com/632nmPodcastSubstack: https://632nmpodcast.substack.com/Michael Dubrovsky: https://x.com/MikeDubrovskyMisha Shalaginov: https://x.com/MYShalaginovXinghui Yin: https://x.com/XinghuiYinSubscribe:Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6ORWebsite: https://www.632nm.com
2 Maj 2h 25min

Quantum Cascade Lasers: Federico Capasso on Curiosity and Bell Labs
In this episode, physicist Federico Capasso recounts his winding path from struggling undergrad to pioneering inventor of the quantum cascade laser. He reveals how openness, daring ideas, and the bottom-up ethos at Bell Labs led to breakthroughs that redefined semiconductor research.Capasso also discusses the blurred lines between basic and applied science, the importance of nurturing curiosity, and the serendipitous moments that propelled his career. From avalanche photodiodes to metasurfaces to quantum biology, he offers a fascinating look at how big discoveries often begin with a simple spark of wonder.
1 Apr 1h 32min

How Edison Inspired Eli Yablonovitch to Create Four World-Changing Inventions
Eli Yablonovitch shares how Thomas Edison's approach of requiring "a thousand failed discoveries for every one that works" shaped his scientific philosophy. From solar cells to semiconductor lasers to photonic crystals to cell phone antennas, Yablonovitch reveals how each invention evolved from identifying fundamental physics concepts that others overlooked. He explains how his light-trapping concept now used in every solar panel stemmed from thinking about statistical mechanics. His strained semiconductor laser design, which initially faced industry resistance, eventually became the standard in all laser pointers and DVDs. Throughout his career spanning Bell Labs, Exxon, and academia, Yablonovitch demonstrates that true innovation comes from understanding basic physics principles and having the courage to pursue ideas others dismiss as impossible.
14 Mars 3h

From Failed PhD to Nobel Prize | John Mather’s Journey to Revolutionize Astronomy
Join the 632nm team as we sit down with Nobel laureate Dr. John Mather. From his childhood days of building radios and telescopes to leading NASA's groundbreaking COBE mission, learn how a spectacular failure during his PhD research unexpectedly paved the way for his Nobel Prize-winning work. And hear the story of how NASA took a chance on a 28-year-old scientist who would change our understanding of the universe.Dr. Mather shares insights into the engineering marvels behind modern space telescopes, including the James Webb Telescope's ingenious cooling system and the concept behind hybrid ground-space observatories. Hear details about near-mission failures, midnight revelations that saved COBE, and the surprising connection between space telescopes and stealth fighter technology. Follow us:Twitter: https://x.com/632nmPodcastSubstack: https://632nmpodcast.substack.com/Michael Dubrovsky: https://x.com/MikeDubrovskyMisha Shalaginov: https://x.com/MYShalaginovXinghui Yin: https://x.com/XinghuiYinSubscribe:Apple Podcasts: https://podcasts.apple.com/us/podcast/632nm/id1751170269Spotify: https://open.spotify.com/show/4aVH9vT5qp5UUUvQ6Uf6ORWebsite: https://www.632nm.com
25 Feb 1h 53min