#151 – Ajeya Cotra on accidentally teaching AI models to deceive us

#151 – Ajeya Cotra on accidentally teaching AI models to deceive us

Imagine you are an orphaned eight-year-old whose parents left you a $1 trillion company, and no trusted adult to serve as your guide to the world. You have to hire a smart adult to run that company, guide your life the way that a parent would, and administer your vast wealth. You have to hire that adult based on a work trial or interview you come up with. You don't get to see any resumes or do reference checks. And because you're so rich, tonnes of people apply for the job — for all sorts of reasons.

Today's guest Ajeya Cotra — senior research analyst at Open Philanthropy — argues that this peculiar setup resembles the situation humanity finds itself in when training very general and very capable AI models using current deep learning methods.

Links to learn more, summary and full transcript.

As she explains, such an eight-year-old faces a challenging problem. In the candidate pool there are likely some truly nice people, who sincerely want to help and make decisions that are in your interest. But there are probably other characters too — like people who will pretend to care about you while you're monitoring them, but intend to use the job to enrich themselves as soon as they think they can get away with it.

Like a child trying to judge adults, at some point humans will be required to judge the trustworthiness and reliability of machine learning models that are as goal-oriented as people, and greatly outclass them in knowledge, experience, breadth, and speed. Tricky!

Can't we rely on how well models have performed at tasks during training to guide us? Ajeya worries that it won't work. The trouble is that three different sorts of models will all produce the same output during training, but could behave very differently once deployed in a setting that allows their true colours to come through. She describes three such motivational archetypes:

  • Saints — models that care about doing what we really want
  • Sycophants — models that just want us to say they've done a good job, even if they get that praise by taking actions they know we wouldn't want them to
  • Schemers — models that don't care about us or our interests at all, who are just pleasing us so long as that serves their own agenda

And according to Ajeya, there are also ways we could end up actively selecting for motivations that we don't want.

In today's interview, Ajeya and Rob discuss the above, as well as:

  • How to predict the motivations a neural network will develop through training
  • Whether AIs being trained will functionally understand that they're AIs being trained, the same way we think we understand that we're humans living on planet Earth
  • Stories of AI misalignment that Ajeya doesn't buy into
  • Analogies for AI, from octopuses to aliens to can openers
  • Why it's smarter to have separate planning AIs and doing AIs
  • The benefits of only following through on AI-generated plans that make sense to human beings
  • What approaches for fixing alignment problems Ajeya is most excited about, and which she thinks are overrated
  • How one might demo actually scary AI failure mechanisms

Get this episode by subscribing to our podcast on the world’s most pressing problems and how to solve them: type ‘80,000 Hours’ into your podcasting app. Or read the transcript below.

Producer: Keiran Harris

Audio mastering: Ryan Kessler and Ben Cordell

Transcriptions: Katy Moore

Avsnitt(305)

#0 – Introducing the 80,000 Hours Podcast

#0 – Introducing the 80,000 Hours Podcast

80,000 Hours is a non-profit that provides research and other support to help people switch into careers that effectively tackle the world's most pressing problems. This podcast is just one of many things we offer, the others of which you can find at 80000hours.org. Since 2017 this show has been putting out interviews about the world's most pressing problems and how to solve them — which some people enjoy because they love to learn about important things, and others are using to figure out what they want to do with their careers or with their charitable giving. If you haven't yet spent a lot of time with 80,000 Hours or our general style of thinking, called effective altruism, it's probably really helpful to first go through the episodes that set the scene, explain our overall perspective on things, and generally offer all the background information you need to get the most out of the episodes we're making now. That's why we've made a new feed with ten carefully selected episodes from the show's archives, called 'Effective Altruism: An Introduction'. You can find it by searching for 'Effective Altruism' in your podcasting app or at 80000hours.org/intro. Or, if you’d rather listen on this feed, here are the ten episodes we recommend you listen to first: • #21 – Holden Karnofsky on the world's most intellectual foundation and how philanthropy can have maximum impact by taking big risks • #6 – Toby Ord on why the long-term future of humanity matters more than anything else and what we should do about it • #17 – Will MacAskill on why our descendants might view us as moral monsters • #39 – Spencer Greenberg on the scientific approach to updating your beliefs when you get new evidence • #44 – Paul Christiano on developing real solutions to the 'AI alignment problem' • #60 – What Professor Tetlock learned from 40 years studying how to predict the future • #46 – Hilary Greaves on moral cluelessness, population ethics and tackling global issues in academia • #71 – Benjamin Todd on the key ideas of 80,000 Hours • #50 – Dave Denkenberger on how we might feed all 8 billion people through a nuclear winter • 80,000 Hours Team chat #3 – Koehler and Todd on the core idea of effective altruism and how to argue for it

1 Maj 20173min

Populärt inom Utbildning

rss-bara-en-till-om-missbruk-medberoende-2
historiepodden-se
det-skaver
nu-blir-det-historia
allt-du-velat-veta
johannes-hansen-podcast
harrisons-dramatiska-historia
sektledare
roda-vita-rosen
alska-oss
rss-max-tant-med-max-villman
i-vantan-pa-katastrofen
rikatillsammans-om-privatekonomi-rikedom-i-livet
not-fanny-anymore
rss-i-skenet-av-blaljus
rss-sjalsligt-avkladd
dumforklarat
sa-in-i-sjalen
kan-jag-sa-kan-du-podden
vi-gar-till-historien