The case for and against AGI by 2030 (article by Benjamin Todd)

The case for and against AGI by 2030 (article by Benjamin Todd)

More and more people have been saying that we might have AGI (artificial general intelligence) before 2030. Is that really plausible?

This article by Benjamin Todd looks into the cases for and against, and summarises the key things you need to know to understand the debate. You can see all the images and many footnotes in the original article on the 80,000 Hours website.

In a nutshell:

  • Four key factors are driving AI progress: larger base models, teaching models to reason, increasing models’ thinking time, and building agent scaffolding for multi-step tasks. These are underpinned by increasing computational power to run and train AI systems, as well as increasing human capital going into algorithmic research.
  • All of these drivers are set to continue until 2028 and perhaps until 2032.
  • This means we should expect major further gains in AI performance. We don’t know how large they’ll be, but extrapolating recent trends on benchmarks suggests we’ll reach systems with beyond-human performance in coding and scientific reasoning, and that can autonomously complete multi-week projects.
  • Whether we call these systems ’AGI’ or not, they could be sufficient to enable AI research itself, robotics, the technology industry, and scientific research to accelerate — leading to transformative impacts.
  • Alternatively, AI might fail to overcome issues with ill-defined, high-context work over long time horizons and remain a tool (even if much improved compared to today).
  • Increasing AI performance requires exponential growth in investment and the research workforce. At current rates, we will likely start to reach bottlenecks around 2030. Simplifying a bit, that means we’ll likely either reach AGI by around 2030 or see progress slow significantly. Hybrid scenarios are also possible, but the next five years seem especially crucial.

Chapters:

  • Introduction (00:00:00)
  • The case for AGI by 2030 (00:00:33)
  • The article in a nutshell (00:04:04)
  • Section 1: What's driven recent AI progress? (00:05:46)
  • How we got here: the deep learning era (00:05:52)
  • Where are we now: the four key drivers (00:07:45)
  • Driver 1: Scaling pretraining (00:08:57)
  • Algorithmic efficiency (00:12:14)
  • How much further can pretraining scale? (00:14:22)
  • Driver 2: Training the models to reason (00:16:15)
  • How far can scaling reasoning continue? (00:22:06)
  • Driver 3: Increasing how long models think (00:25:01)
  • Driver 4: Building better agents (00:28:00)
  • How far can agent improvements continue? (00:33:40)
  • Section 2: How good will AI become by 2030? (00:35:59)
  • Trend extrapolation of AI capabilities (00:37:42)
  • What jobs would these systems help with? (00:39:59)
  • Software engineering (00:40:50)
  • Scientific research (00:42:13)
  • AI research (00:43:21)
  • What's the case against this? (00:44:30)
  • Additional resources on the sceptical view (00:49:18)
  • When do the 'experts' expect AGI? (00:49:50)
  • Section 3: Why the next 5 years are crucial (00:51:06)
  • Bottlenecks around 2030 (00:52:10)
  • Two potential futures for AI (00:56:02)
  • Conclusion (00:58:05)
  • Thanks for listening (00:59:27)

Audio engineering: Dominic Armstrong
Music: Ben Cordell

Episoder(305)

#0 – Introducing the 80,000 Hours Podcast

#0 – Introducing the 80,000 Hours Podcast

80,000 Hours is a non-profit that provides research and other support to help people switch into careers that effectively tackle the world's most pressing problems. This podcast is just one of many things we offer, the others of which you can find at 80000hours.org. Since 2017 this show has been putting out interviews about the world's most pressing problems and how to solve them — which some people enjoy because they love to learn about important things, and others are using to figure out what they want to do with their careers or with their charitable giving. If you haven't yet spent a lot of time with 80,000 Hours or our general style of thinking, called effective altruism, it's probably really helpful to first go through the episodes that set the scene, explain our overall perspective on things, and generally offer all the background information you need to get the most out of the episodes we're making now. That's why we've made a new feed with ten carefully selected episodes from the show's archives, called 'Effective Altruism: An Introduction'. You can find it by searching for 'Effective Altruism' in your podcasting app or at 80000hours.org/intro. Or, if you’d rather listen on this feed, here are the ten episodes we recommend you listen to first: • #21 – Holden Karnofsky on the world's most intellectual foundation and how philanthropy can have maximum impact by taking big risks • #6 – Toby Ord on why the long-term future of humanity matters more than anything else and what we should do about it • #17 – Will MacAskill on why our descendants might view us as moral monsters • #39 – Spencer Greenberg on the scientific approach to updating your beliefs when you get new evidence • #44 – Paul Christiano on developing real solutions to the 'AI alignment problem' • #60 – What Professor Tetlock learned from 40 years studying how to predict the future • #46 – Hilary Greaves on moral cluelessness, population ethics and tackling global issues in academia • #71 – Benjamin Todd on the key ideas of 80,000 Hours • #50 – Dave Denkenberger on how we might feed all 8 billion people through a nuclear winter • 80,000 Hours Team chat #3 – Koehler and Todd on the core idea of effective altruism and how to argue for it

1 Mai 20173min

Populært innen Fakta

fastlegen
dine-penger-pengeradet
hanna-de-heldige
relasjonspodden-med-dora-thorhallsdottir-kjersti-idem
rss-strid-de-norske-borgerkrigene
foreldreradet
treningspodden
jakt-og-fiskepodden
dypdykk
sinnsyn
fryktlos
mikkels-paskenotter
rss-kunsten-a-leve
rss-sunn-okonomi
takk-og-lov-med-anine-kierulf
gravid-uke-for-uke
tomprat-med-gunnar-tjomlid
hverdagspsyken
rss-sarbar-med-lotte-erik
doktor-fives-podcast